TY - JOUR
T1 - Salinity Eustress Increases the Biosynthesis and Accumulation of Phenolic Compounds That Improve the Functional and Antioxidant Quality of Red Lettuce
AU - Santander, Christian
AU - Vidal, Gladys
AU - Ruiz, Antonieta
AU - Vidal, Catalina
AU - Cornejo, Pablo
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3
Y1 - 2022/3
N2 - The application of different techniques of positive stress (eustress), such as mild and moderate saline stress, could enhance the nutritional and functional attributes of food vegetables. The present study aimed to evaluate the positive effect of salinity as a eustressor on the functional quality of red lettuce growing under hydroponic conditions and subjected to increasing salinity. Red lettuce plants were grown for 60 days and, 45 days after sowing, were subjected to different levels of salinity (0, 50, 100, 150, and 200 mM NaCl). The phenolic compound concentration and antioxidant activity were measured at 7 and 15 days after the application of salinity treatment. Moreover, at harvest, the root and shoot biomass and efficiency of photosystem II were evaluated. Our results showed that the highest phenolic concentration and antioxidant activity were obtained through moderate salt stress (50 mM NaCl) applied for 15 days without affecting the photosynthetic activity and biomass production of lettuce plants. By contrast, when severe salt stress levels (150–200 mM NaCl) were applied, an increase in phenolic compounds was also obtained, but concomitantly with a significant reduction in antioxidant activity and biomass production. The application of moderate stress in red lettuce suggests its potential use as a tool to increase the biosynthesis and accumulation of bioactive secondary metabolites, improving the nutritional characteristics of red lettuce.
AB - The application of different techniques of positive stress (eustress), such as mild and moderate saline stress, could enhance the nutritional and functional attributes of food vegetables. The present study aimed to evaluate the positive effect of salinity as a eustressor on the functional quality of red lettuce growing under hydroponic conditions and subjected to increasing salinity. Red lettuce plants were grown for 60 days and, 45 days after sowing, were subjected to different levels of salinity (0, 50, 100, 150, and 200 mM NaCl). The phenolic compound concentration and antioxidant activity were measured at 7 and 15 days after the application of salinity treatment. Moreover, at harvest, the root and shoot biomass and efficiency of photosystem II were evaluated. Our results showed that the highest phenolic concentration and antioxidant activity were obtained through moderate salt stress (50 mM NaCl) applied for 15 days without affecting the photosynthetic activity and biomass production of lettuce plants. By contrast, when severe salt stress levels (150–200 mM NaCl) were applied, an increase in phenolic compounds was also obtained, but concomitantly with a significant reduction in antioxidant activity and biomass production. The application of moderate stress in red lettuce suggests its potential use as a tool to increase the biosynthesis and accumulation of bioactive secondary metabolites, improving the nutritional characteristics of red lettuce.
KW - Bioactive compounds
KW - Lactuca sativa
KW - Saline stress
KW - Secondary metabolism
UR - http://www.scopus.com/inward/record.url?scp=85125853980&partnerID=8YFLogxK
U2 - 10.3390/agronomy12030598
DO - 10.3390/agronomy12030598
M3 - Article
AN - SCOPUS:85125853980
SN - 2073-4395
VL - 12
JO - Agronomy
JF - Agronomy
IS - 3
M1 - 598
ER -