TY - JOUR
T1 - Assessment of the Photosynthetic Response of Potato Plants Inoculated with Rhizoctonia solani and Treated with Flesh-Colored Potato Extracts Nanoencapsulated with Solid Lipid Nanoparticles
AU - Rivas, Sheina
AU - Fincheira, Paola
AU - González, Felipe
AU - Santander, Christian
AU - Meier, Sebastián
AU - Santos, Cledir
AU - Contreras, Boris
AU - Ruiz, Antonieta
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/1
Y1 - 2025/1
N2 - Potato has great nutritional and economic importance in agriculture. However, Rhizoctonia solani represents a significant risk, reducing the yield and quality of potato production. Flesh-colored potato (FCP) extracts show in vitro inhibitory effects against R. solani, although environmental factors may reduce their stability. Solid lipid nanoparticles (SNLs) offer a solution by encapsulating these compounds, preventing degradation, and improving delivery, positioning solid lipid nanoparticles as a promising technology for sustainable extract application. A greenhouse potato assay at two phenological stages under R. solani inoculation was used to evaluate the photosynthetic response (photosynthetic parameters and pigments) to two doses of the nanoencapsulated extract (SNL + FCP). During inoculation and commercial fungicide application, stomatal conductance, the photosynthetic rate, and the internal CO2 concentration increased compared with those of the non-inoculated control (NT), whereas the nanoencapsulated extract maintained levels similar to those of the NT, suggesting the possible regulation of the photosynthetic defense system. In terms of photosynthetic pigments, SLN + FCP maintained chlorophyll concentrations, unlike those in inoculated plants, which significantly decreased. Component analysis revealed that a lower dose primarily increased chlorophyll B synthesis, whereas a higher dose increased chlorophyll A compared with the inoculated control. These findings suggest an improved response from SLN + FCP to commercial fungicides, particularly with respect to photosynthetic pigments. However, further research is needed, and the results indicate promising potential for the eco-friendly control of phytopathogenic fungi in agriculture.
AB - Potato has great nutritional and economic importance in agriculture. However, Rhizoctonia solani represents a significant risk, reducing the yield and quality of potato production. Flesh-colored potato (FCP) extracts show in vitro inhibitory effects against R. solani, although environmental factors may reduce their stability. Solid lipid nanoparticles (SNLs) offer a solution by encapsulating these compounds, preventing degradation, and improving delivery, positioning solid lipid nanoparticles as a promising technology for sustainable extract application. A greenhouse potato assay at two phenological stages under R. solani inoculation was used to evaluate the photosynthetic response (photosynthetic parameters and pigments) to two doses of the nanoencapsulated extract (SNL + FCP). During inoculation and commercial fungicide application, stomatal conductance, the photosynthetic rate, and the internal CO2 concentration increased compared with those of the non-inoculated control (NT), whereas the nanoencapsulated extract maintained levels similar to those of the NT, suggesting the possible regulation of the photosynthetic defense system. In terms of photosynthetic pigments, SLN + FCP maintained chlorophyll concentrations, unlike those in inoculated plants, which significantly decreased. Component analysis revealed that a lower dose primarily increased chlorophyll B synthesis, whereas a higher dose increased chlorophyll A compared with the inoculated control. These findings suggest an improved response from SLN + FCP to commercial fungicides, particularly with respect to photosynthetic pigments. However, further research is needed, and the results indicate promising potential for the eco-friendly control of phytopathogenic fungi in agriculture.
KW - chlorophylls
KW - nanoencapsulation
KW - photosynthetic parameters
KW - Solanum tuberosum
UR - http://www.scopus.com/inward/record.url?scp=85216074621&partnerID=8YFLogxK
U2 - 10.3390/plants14020156
DO - 10.3390/plants14020156
M3 - Article
AN - SCOPUS:85216074621
SN - 2223-7747
VL - 14
JO - Plants
JF - Plants
IS - 2
M1 - 156
ER -