Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles

Jonathan Suazo-Hernández, Rawan Mlih, Marion Bustamante, Carmen Castro-Castillo, María de la Luz Mora, María de los Ángeles Sepúlveda-Parada, Catalina Mella, Pablo Cornejo, Antonieta Ruiz

Research output: Contribution to journalArticlepeer-review

Abstract

The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption–desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO–ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO–ENP, and Mollisol + 1% ZnO–ENP systems fitted well to the pseudo-second-order model (r2 ≥ 0.942, and χ2 ≤ 61), and the Elovich model (r2 ≥ 0.951, and χ2 ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r2 = 0.976, and χ2 = 16), and for the Mollisol soil, the Langmuir model (r2 = 0.991, and χ2 = 3) had a better fit to the data. With 1% ZnO–ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO–ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.

Original languageEnglish
Article number363
JournalToxics
Volume13
Issue number5
DOIs
StatePublished - May 2025
Externally publishedYes

Keywords

  • adsorption
  • engineered nanoparticles
  • eutrophication
  • inorganic phosphate
  • Mollisol
  • Ultisol
  • zinc oxide nanoparticles

Fingerprint

Dive into the research topics of 'Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles'. Together they form a unique fingerprint.

Cite this