TY - JOUR
T1 - Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease
AU - Cabezas-Opazo, Fabian A.
AU - Vergara-Pulgar, Katiana
AU - Pérez, María José
AU - Jara, Claudia
AU - Osorio-Fuentealba, Cesar
AU - Quintanilla, Rodrigo A.
N1 - Publisher Copyright:
Copyright © 2015 Fabian A. Cabezas-Opazo et al.
PY - 2015
Y1 - 2015
N2 - Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration.
AB - Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration.
UR - http://www.scopus.com/inward/record.url?scp=84937019697&partnerID=8YFLogxK
U2 - 10.1155/2015/509654
DO - 10.1155/2015/509654
M3 - Article
C2 - 26221414
AN - SCOPUS:84937019697
SN - 1942-0900
VL - 2015
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 509654
ER -