Abstract
Abstract Poly(lactic acid) (PLA) composites with titanium oxide (TiO2) ~ 10-nm nanoparticles were produced by the melting process and their main properties were evaluated. The nanoparticles are homogeneously dispersed in the matrix with a low degree of agglomeration, as seen by transmission electron microscopy (TEM). The crystallinity temperature increased ~ 12% when 5 wt.% of TiO2 was added, showing that the nanoparticles acted as nucleating agents this trend was confirmed by optical images. The elastic modulus increased ~ 54% compared to neat PLA at 5 wt.% of nanoparticles. Despite these improvements, PLA/TiO2 nanocomposites showed lower shear viscosity than neat PLA, possibly reflecting degradation of the polymer due to the particles. Regarding biocidal properties, after 2 h of contact the PLA/TiO2 composites with 8 wt.% TiO2 showed a reduction of Escherichia coli colonies of ~ 82% under no UVA irradiation compared to pure PLA. This biocidal characteristic can be increased under UVA irradiation, with nanocomposites containing 8 wt.% TiO2 killing 94% of the bacteria. The PLA/TiO2 nanocomposites with 8 wt.% were also 99.99% effective against Aspergillus fumigatus under the UVA irradiation.
| Original language | English |
|---|---|
| Article number | 5641 |
| Pages (from-to) | 314-320 |
| Number of pages | 7 |
| Journal | Materials Science and Engineering C |
| Volume | 57 |
| DOIs | |
| State | Published - 17 Aug 2015 |
| Externally published | Yes |
Keywords
- Mechanical properties
- Nano particles
- Nanocomposites
- Polymer matrix composites (PMCs)
- Thermal properties