A skew-normal dynamic linear model and Bayesian forecasting

Reinaldo B. Arellano-Valle, Javier E. Contreras-Reyes, Freddy O.López Quintero, Abel Valdebenito

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

Dynamic linear models are typically developed assuming that both the observational and system distributions are normal. In this work, we relax this assumption by considering a skew-normal distribution for the observational random errors, providing thus an extension of the standard normal dynamic linear model. Full Bayesian inference is carried out using the hierarchical representation of the model. The inference scheme is led by means of the adaptation of the Forward Filtering Backward sampling and the usual MCMC algorithms to perform the inference. The proposed methodology is illustrated by a simulation study and applied to the condition factor index of male and female anchovies off northern Chile. These indexes have not been studied in a dynamic linear model framework.

Idioma originalInglés
Páginas (desde-hasta)1055-1085
Número de páginas31
PublicaciónComputational Statistics
Volumen34
N.º3
DOI
EstadoPublicada - 1 sep. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A skew-normal dynamic linear model and Bayesian forecasting'. En conjunto forman una huella única.

Citar esto