An information-theoretic approach for multivariate skew-t distributions and applications

Salah H. Abid, Uday J. Quaez, Javier E. Contreras-Reyes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

Shannon and Rényi entropies are two important measures of uncertainty for data analysis. These entropies have been studied for multivariate Student-t and skew-normal distributions. In this paper, we extend the Rényi entropy to multivariate skew-t and finite mixture of multivariate skew-t (FMST) distributions. This class of flexible distributions allows handling asymmetry and tail weight behavior simultaneously. We find upper and lower bounds of Rényi entropy for these families. Numerical simulations illustrate the results for several scenarios: symmetry/asymmetry and light/heavy-tails. Finally, we present applications of our findings to a swordfish length-weight dataset to illustrate the behavior of entropies of the FMST distribution. Comparisons with the counterparts—the finite mixture of multivariate skew-normal and normal distributions—are also presented.

Idioma originalInglés
Número de artículo146
Páginas (desde-hasta)1-13
Número de páginas13
PublicaciónMathematics
Volumen9
N.º2
DOI
EstadoPublicada - 2 ene. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'An information-theoretic approach for multivariate skew-t distributions and applications'. En conjunto forman una huella única.

Citar esto