Asymmetric heavy-tailed vector auto-regressive processes with application to financial data

Mohsen Maleki, Darren Wraith, Mohammad R. Mahmoudi, Javier E. Contreras-Reyes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

42 Citas (Scopus)

Resumen

Vector Auto-regressive (VAR) models are commonly used for modelling multivariate time series and the typical distributional form is to assume a multivariate normal. However, the assumption of Gaussian white noise in multivariate time series is often not reasonable in applications where there are extreme and/or skewed observations. In this setting, inference based on using a Gaussian distributional form will provide misleading results. In this paper, we extended the multivariate setting of autoregressive process, by considering the multivariate scale mixture of skew-normal (SMSN) distributions for VAR innovations. The multivariate SMSN family is able to be represented in a hierarchical form which relatively easily facilitates simulation and an EM-type algorithm to estimate the model parameters. The performance of the proposed model is illustrated by using simulated and real datasets.

Idioma originalInglés
Páginas (desde-hasta)324-340
Número de páginas17
PublicaciónJournal of Statistical Computation and Simulation
Volumen90
N.º2
DOI
EstadoPublicada - 22 ene. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Asymmetric heavy-tailed vector auto-regressive processes with application to financial data'. En conjunto forman una huella única.

Citar esto