TY - JOUR
T1 - Development of biophoto anodes using Ulvophyceae macroalgae
AU - Choque, Sergio
AU - Zuñiga, Cesar
AU - González, Alberto
AU - Moenne, Alejandra
AU - Antiochia, Riccarda
AU - Gorton, Lo
AU - Tasca, Federico
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2022/12/19
Y1 - 2022/12/19
N2 - Three different macroalgae, i.e., U. lactuca, U. linza, and U. compressa, have been studied for biological photovoltaic energy system (BPVE) using edge plane pyrolytic graphite as the supporting working electrode. The studied biophotoanodes were evaluated in terms of direct electron transfer (DET) and mediated electron transfer (MET) processes. Ferrocyanide (FeCN), p-benzoquinone (BQ), and 1,4-naphthoquinone (NQ) were used as a mediator during biophotovoltaic experiments in the presence and absence of applied light. The electrochemical characterization was performed by cyclic voltammetry (CV) and chronoamperometry. The results show that using BQ during the MET process, the electron transfer to the graphite electrode drastically increases during light conditions, where the most promising biophotoanode was in the presence of BQ and U. linza with a current density of 72.1 ± 9.1 μA cm−2, which represents an increase of almost 2000 times over DET results. Similar results were obtained with U. lactuca and U. compressa. The high performance in the presence of BQ for the three macroalgae has been attributed to the favorable penetration of the quinone molecule to the cytoplasmic membrane, allowing the direct exchange of electrons with photosystem II in the thylakoid structure.
AB - Three different macroalgae, i.e., U. lactuca, U. linza, and U. compressa, have been studied for biological photovoltaic energy system (BPVE) using edge plane pyrolytic graphite as the supporting working electrode. The studied biophotoanodes were evaluated in terms of direct electron transfer (DET) and mediated electron transfer (MET) processes. Ferrocyanide (FeCN), p-benzoquinone (BQ), and 1,4-naphthoquinone (NQ) were used as a mediator during biophotovoltaic experiments in the presence and absence of applied light. The electrochemical characterization was performed by cyclic voltammetry (CV) and chronoamperometry. The results show that using BQ during the MET process, the electron transfer to the graphite electrode drastically increases during light conditions, where the most promising biophotoanode was in the presence of BQ and U. linza with a current density of 72.1 ± 9.1 μA cm−2, which represents an increase of almost 2000 times over DET results. Similar results were obtained with U. lactuca and U. compressa. The high performance in the presence of BQ for the three macroalgae has been attributed to the favorable penetration of the quinone molecule to the cytoplasmic membrane, allowing the direct exchange of electrons with photosystem II in the thylakoid structure.
UR - http://www.scopus.com/inward/record.url?scp=85146192851&partnerID=8YFLogxK
U2 - 10.1039/d2ta07046d
DO - 10.1039/d2ta07046d
M3 - Article
AN - SCOPUS:85146192851
SN - 2050-7488
VL - 11
SP - 2661
EP - 2669
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 6
ER -