TY - JOUR
T1 - Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering
AU - García, Gabriel
AU - Moreno-Serna, Viviana
AU - Saavedra, Marcela
AU - Cordoba, Alexander
AU - Canales, Daniel
AU - Alfaro, Aline
AU - Guzmán-Soria, Aldo
AU - Orihuela, Pedro
AU - Zapata, Sebastián
AU - Grande-Tovar, Carlos David
AU - Valencia-Llano, Carlos Humberto
AU - Zapata, Paula A.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/7
Y1 - 2024/7
N2 - Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.
AB - Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.
KW - CaO nanoparticles
KW - Electrospinning method
KW - PCL/starch
KW - Tissue engineering
UR - http://www.scopus.com/inward/record.url?scp=85195415425&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.132891
DO - 10.1016/j.ijbiomac.2024.132891
M3 - Article
C2 - 38848852
AN - SCOPUS:85195415425
SN - 0141-8130
VL - 273
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 132891
ER -