TY - JOUR
T1 - Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa
T2 - PaCCP1 and PaCCP2
AU - Parra, Boris
AU - Sandoval, Maximiliano
AU - Arriagada, Vicente
AU - Amsteins, Luis
AU - Aguayo, Cristobal
AU - Opazo-Capurro, Andrés
AU - Dechesne, Arnaud
AU - González-Rocha, Gerardo
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/12
Y1 - 2024/12
N2 - Background/Objectives: Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. Methods: We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. Results: Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. Conclusions: Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy.
AB - Background/Objectives: Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. Methods: We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. Results: Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. Conclusions: Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy.
KW - antimicrobial resistance
KW - bacteria
KW - bacteriophages
KW - P. aeruginosa
KW - virus
KW - wastewater
UR - http://www.scopus.com/inward/record.url?scp=85213289584&partnerID=8YFLogxK
U2 - 10.3390/ph17121616
DO - 10.3390/ph17121616
M3 - Article
AN - SCOPUS:85213289584
SN - 1424-8247
VL - 17
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 12
M1 - 1616
ER -