Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine

Florencia Hastings, Ignacio Fuentes, Mario Perez-Bidegain, Rafael Navas, Angela Gorgoglione

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Land-cover mapping is critically needed in land-use planning and policy making. Compared to other techniques, Google Earth Engine (GEE) offers a free cloud of satellite information and high computation capabilities. In this context, this article examines machine learning with GEE for land-cover mapping. For this purpose, a five-phase procedure is applied: (1) imagery selection and pre-processing, (2) selection of the classes and training samples, (3) classification process, (4) post-classification, and (5) validation. The study region is located in the San Salvador basin (Uruguay), which is under agricultural intensification. As a result, the 1990 land-cover map of the San Salvador basin is produced. The new map shows good agreements with past agriculture census and reveals the transformation of grassland to cropland in the period 1990–2018.

Idioma originalInglés
Título de la publicación alojadaComputational Science and Its Applications – ICCSA 2020 - 20th International Conference, Proceedings
EditoresOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blecic, David Taniar, Bernady O. Apduhan, Ana Maria A.C. Rocha, Eufemia Tarantino, Carmelo Maria Torre, Yeliz Karaca
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas721-736
Número de páginas16
ISBN (versión impresa)9783030588106
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento20th International Conference on Computational Science and Its Applications, ICCSA 2020 - Cagliari, Italia
Duración: 1 jul. 20204 jul. 2020

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12252 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th International Conference on Computational Science and Its Applications, ICCSA 2020
País/TerritorioItalia
CiudadCagliari
Período1/07/204/07/20

Huella

Profundice en los temas de investigación de 'Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine'. En conjunto forman una huella única.

Citar esto