On the modified skew-normal-Cauchy distribution: properties, inference and applications

Javier E. Contreras-Reyes, Fereshte Kahrari, Daniel Devia Cortés

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

In this paper, we study further properties of the modified skew-normal-Cauchy (MSNC) distribution. MSNC distribution corresponds to a reformulation of skew-normal-Cauchy distribution that allows to obtain a nonsingular Fisher Information Matrix at skewness parameter equal zero. We suggest a hierarchical representation which allows alternative derivations for moments generating function, moments, and skewness and kurtosis coefficients. As an application, we develop hypothesis testing for normality considering the Kullback–Leibler divergence between MSNC distribution and the normal one. Finally, we apply this result to condition factor time series of shortfin mako sharks off northern Chile.

Idioma originalInglés
Páginas (desde-hasta)3615-3631
Número de páginas17
PublicaciónCommunications in Statistics - Theory and Methods
Volumen50
N.º15
DOI
EstadoPublicada - 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On the modified skew-normal-Cauchy distribution: properties, inference and applications'. En conjunto forman una huella única.

Citar esto