Parameter estimation of the multivariate unrestricted skew-normal distribution using ECM algorithm

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The probability density function of the multivariate unrestricted skew-normal (SUN) distribution, corresponding to a screened normal density, allow to modeling skewness and kurtosis in data in terms of a skewness parameter vector and a truncation parameter matrix. These parameters are related to the shape and heavy-tails of the density. In this article, we present the Expectation/Conditional Maximization (ECM) algorithm for the SUN distribution based on a hierarchical stochastic representation. In addition, behavior of ECM algorithm’s steps is measured using an information theoretic approach based on Jeffrey’s divergence and related homogeneity test. Usefulness of the proposed method is illustrated by an application to Chilean economic perception data.

Idioma originalInglés
PublicaciónCommunications in Statistics: Simulation and Computation
DOI
EstadoAceptada/en prensa - 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Parameter estimation of the multivariate unrestricted skew-normal distribution using ECM algorithm'. En conjunto forman una huella única.

Citar esto