Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions

Reinaldo B. Arellano-Valle, Javier E. Contreras-Reyes, Marc G. Genton

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

74 Citas (Scopus)

Resumen

The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew-elliptical distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile.

Idioma originalInglés
Páginas (desde-hasta)42-62
Número de páginas21
PublicaciónScandinavian Journal of Statistics
Volumen40
N.º1
DOI
EstadoPublicada - mar. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions'. En conjunto forman una huella única.

Citar esto