The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data

Akram Hoseinzadeh, Mohsen Maleki, Zahra Khodadadi, Javier E. Contreras-Reyes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

29 Citas (Scopus)

Resumen

In this work, we have defined a new family of skew distribution: the Skew-Reflected-Gompertz. We have also derived some of its probabilistic and inferential properties. The maximum likelihood estimates of the proposed distribution parameters are obtained via an EM-algorithm, and performances of the proposed model and its estimates are shown via simulation studies as well as real applications. Three real datasets are also used to illustrate the model performance which can compete against some well-known skew distributions frequently used in applications.

Idioma originalInglés
Páginas (desde-hasta)132-141
Número de páginas10
PublicaciónJournal of Computational and Applied Mathematics
Volumen349
DOI
EstadoPublicada - 15 mar. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data'. En conjunto forman una huella única.

Citar esto