Time-dependent residual Fisher information and distance for some special continuous distributions

Javier E. Contreras-Reyes, Diego I. Gallardo, Omid Kharazmi

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

Fisher information is a measure to quantify information and have important inferential, scaling and uncertainty properties. Kharazmi and Asadi (Braz. J. Prob. Stat. 32, 795-814, 2018) presented the time-dependent Fisher information of any density function. Specifically, they considered a nonnegative continuous random (lifetime) variable X and define the time-dependent Fisher information and distance for density function of the residual random variable associated to X. In this article, we computed the mentioned measures for generalized gamma, Beta prime, generalized inverse Gaussian and truncated skew-normal densities. For generalized gamma, beta prime and generalized inverse Gaussian densities, exact expressions are provided and, for truncated skew-normal case, we computed the mentioned measures for truncated (at positive support) skew-normal random variables by using exact expressions in terms of cumulants and moments. Some numerical results are illustrated.

Idioma originalInglés
Páginas (desde-hasta)4331-4351
Número de páginas21
PublicaciónCommunications in Statistics: Simulation and Computation
Volumen53
N.º9
DOI
EstadoPublicada - 2024
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Time-dependent residual Fisher information and distance for some special continuous distributions'. En conjunto forman una huella única.

Citar esto